Solar Eligibility Checklist for Expedited Photovoltaic Permitting for One- and Two-Family Dwellings

GENERAL REQUIREMENTS

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Y</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. System size is 10 kW AC CEC rating or less</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. System is located in an area with a ground snow load of ___ (< 20 pounds)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. System is being installed on a legally permitted structure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. The solar array is roof-mounted on one or two family dwelling or accessory structure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. The solar panel/module arrays will not exceed the maximum legal building height</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. Solar system is utility interactive and without battery storage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. Permit application is completed and attached</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ELECTRICAL REQUIREMENTS

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Y</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>No more than four photovoltaic module strings are connected to each Maximum Power Point Tracking (MPPT) input where source circuit fusing is included in the inverter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1) No more than two strings per MPPT input where source circuit fusing is not included</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2) Fuses (if needed) are rated to the series fuse rating of the PV module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3) No more than one noninverter-integrated DC combiner is utilized per inverter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. For central inverter systems: No more than two inverters are utilized</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. The PV system is interconnected to a single-phase AC service panel of nominal 120/220 Vac with a bus bar rating of 225 A or less</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. The PV system is connected to the load side of the utility distribution equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. A Solar PV Standard Plan and supporting documentation is completed and attached</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STRUCTURAL REQUIREMENTS

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Y</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. A completed Structural Criteria and supporting documentation is attached (if required)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIRE SAFETY REQUIREMENTS

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Y</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Clear access pathways provided</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. Fire classification solar system is provided (UL 1703 for racking & module proposed)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. All required markings and labels are provided</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. A diagram of the roof layout of all panels, modules, clear access pathways and approximate locations of electrical disconnecting means and roof access points is completed and attached</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. These criteria are intended for expedited solar permitting process.
2. If any items are checked NO, revise design to fit within Eligibility Checklist, otherwise permit application will go through standard review process.

Fees under this system are based upon one plan check review and one field inspection. Any additional plan review or inspections will be charged at Building Services current time and material rate.

Page 1 of 21
Solar PV Standard Plan – Simplified
Central/String Inverter Systems for
One- and Two-Family Dwellings

SCOPE: Use this plan ONLY for utility-interactive central/string inverter systems not exceeding a system AC inverter output rating of 10kW on the roof of a one- or two-family dwelling or accessory structure. The photovoltaic system must interconnect to the load side of a single-phase AC service panel of nominal 120/240Vac with a bus bar rating of 225A or less. This plan is not intended for bipolar systems, hybrid systems or systems that utilize storage batteries, charge controllers, trackers, more than two inverters or more than one DC combiner (noninverter-integrated) per inverter. Systems must be in compliance with current California Building Standards Codes and any local amendments. Other Articles of the California Electrical Code (CEC) shall apply as specified in 690.3.

MANUFACTURER’S SPECIFICATION SHEETS MUST BE PROVIDED for proposed inverter, modules, combiner/junction boxes and racking systems. Installation instructions for bonding and grounding equipment shall be provided. Listed and labeled equipment shall be installed and used in accordance with any instructions included in the listing or labeling (CEC 110.3). Equipment intended for use with PV system shall be identified and listed for the application (CEC 690.4[D]).

Job Address: _______________________________ Permit #: _______________________
Contractor/Engineer Name: _______________________________ License # and Class: __________
Signature: _______________________________ Date: ___________ Phone Number: ________________
Solar photovoltaic system is located on (circle one): Dwelling Detach Accessory Bldg. Ag Exempt Barn

Total # of Inverters installed: ____________ (If more than one inverter, complete and attach the “Supplemental Calculation Sheets” and the “Load Center Calculations” if a new load center is to be used.)

<table>
<thead>
<tr>
<th>Inverter 1 AC Output Power Rating: _________________ Watts</th>
<th>Inverter 2</th>
</tr>
</thead>
</table>

| AC Output Power Rating (if applicable): _________________ Watts |

Combined Inverter Output Power Rating: _________________ ≤ 10,000 Watts

Location Ambient Temperatures (Check box next to which lowest expected temperature is used):

1) ☐ Lowest expected ambient temperature for the location \(T_L \) = Between -1 to -5 °C

☐ Lowest expected ambient temperature for the location \(T_L \) = Between -6 to -10 °C

Average ambient high temperature \(T_{hi} \) = 47 °C

Note: For a lower \(T_L \) or a higher \(T_{hi} \), use the Comprehensive Standard Plan

DC Information:

<table>
<thead>
<tr>
<th>Module Manufacturer: _______________________________</th>
<th>Model:</th>
</tr>
</thead>
</table>

2) Module \(V_{oc} \) (from module nameplate): _______ Volts

3) Module \(I_{sc} \) (from module nameplate): _______ Amps

4) Module DC output power under standard test conditions (STC) = _______ Watts (STC)
5) DC Module Layout

<table>
<thead>
<tr>
<th>Identify each source circuit (string) for inverter 1 shown on the roof plan with a Tag (e.g., A, B, C...)</th>
<th>Number of modules per source circuit for inverter 1</th>
<th>Identify, by tag, which source circuits on the roof are to be paralleled (If none, put N/A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Combiner 1:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Combiner 2:</td>
</tr>
</tbody>
</table>

Total number of source circuits for inverter 1:

6) Are DC/DC Converters used? ☐ Yes ☐ No If No, skip to STEP 7. If Yes, enter info below.

DC/DC Converter Model #: ____________________________ DC/DC Converter Max DC Input Voltage: ______ Volts
Max DC Output Current: ____________________________ Amps DC/DC Converter Max DC Output Voltage: _____________ Volts
Max # of DC/DC Converters in an Input Circuit: ____________ DC/DC Converter Max DC Input Power: ___________ Watts

7) Max. System DC Voltage – Use A1 or A2 for systems without DC/DC converters, and B1 or B2 with DC/DC converters.

☐ A1. Module V_{dc} (STEP 2) = ________ x # in series (STEP 5) ________ x 1.12 (If -1≤T_{1}≤-5°C, STEP 1) = _______ V

☐ A2. Module V_{dc} (STEP 2) = ________ x # in series (STEP 5) ________ x 1.14 (If -6≤T_{1}≤-10°C, STEP 1) = _______ V

| Table 1. Maximum Number of PV Modules in Series Based on Module Rated VOC for 600 Vdc Rated Equipment (CEC 690.7) |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Max. Rated Module VOC (*1.12) (Volts) | 29.76 | 31.51 | 33.48 | 35.71 | 38.27 | 41.21 | 44.64 | 48.70 | 53.57 | 59.52 | 66.96 | 76.53 | 89.29 |
| Max. Rated Module VOC (*1.14) (Volts) | 29.24 | 30.96 | 32.89 | 35.09 | 37.59 | 40.49 | 43.86 | 47.85 | 52.63 | 58.48 | 65.79 | 75.19 | 87.72 |
| Max # of Modules for 600 Vdc | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 |

Use for DC/DC converters. The value calculated below must be less than DC/DC converter max DC input voltage (STEP #6).

☐ B1. Module V_{dc} (STEP 2) ________ x # of modules per converter (STEP 6) ________ x 1.12 (If -1≤T_{1}≤-5°C, STEP 1) = _______ V

☐ B2. Module V_{dc} (STEP 2) ________ x # of modules per converter (STEP 6) ________ x 1.14 (If -6≤T_{1}≤-10°C, STEP 1) = _______ V

| Table 2. Largest Module VOC for Single-Module DC/DC Converter Configurations (With 80V AFCI Cap) (CEC 690.7 and 690.11) |
|---|---|---|---|---|---|---|
| Max. Rated Module VOC (*1.12) (Volts) | 30.4 | 33.0 | 35.7 | 38.4 | 41.1 | 43.8 |
| Max. Rated Module VOC (*1.14) (Volts) | 29.8 | 32.5 | 35.1 | 37.7 | 40.4 | 43.0 |
| DC/DC Converter Max DC Input (STEP #6) (Volts) | 34 | 37 | 40 | 43 | 46 | 49 |

Page 3 of 21
8) Maximum System DC Voltage from DC/DC Converters to Inverter – Only required if Yes in STEP 6
 Maximum System DC Voltage = ______________________ Volts

9) Maximum Source Circuit Current
 Is Module Isc below 9.6 Amps (STEP 3)? □ Yes □ No (if No, use Comprehensive Standard Plan)

10) Sizing Source Circuit Conductors
 Source Circuit Conductor Size = Min. #10 AWG copper conductor, 90°C wet (USE-2, PV Wire, XHHW-2, THWN-2, RHW-2)
 For up to 8 conductors in roof-mounted conduit exposed to sunlight at least ½” from the roof covering (CEC 310)
 Note: For over 8 conductors in the conduit or mounting height of lower than ½” from the roof, use Comprehensive Plan.

11) Are PV source circuits combined prior to the inverter? □ Yes □ No
 If No, use Single Line Diagram 1 with Single Line Diagram 3 and proceed to STEP 13.
 If Yes, use Single Line Diagram 2 with Single Line Diagram 4 and proceed to STEP 12.
 Is source circuit OCPD required? □ Yes □ No
 Source circuit OCPD size (if needed): 15 Amps

12) Sizing PV Output Circuit Conductors – If a combiner box will NOT be used from [STEP 11],
 Output Circuit Conductor Size = Min. #6 AWG copper conductor

13) Inverter DC Disconnect
 Does the inverter have an integrated DC disconnect? □ Yes □ No
 If yes, proceed to STEP 14.
 If no, the external DC disconnect to be installed is rated for __ Amps (DC) and __________ Volts (DC)

14) Inverter information
 Manufacturer: ____________________________ Model: ____________________________
 Max. Continuous AC Output Current Rating: __________ Amps
 Integrated DC Arc-Fault Circuit Protection? □ Yes □ No (If No is selected, Comprehensive Standard Plan)
 Grounded or Ungrounded System: □ Grounded □ Ungrounded

AC Information:

15) Sizing Inverter Output Circuit Conductors and OCPD
 Inverter Output OCPD rating = _____ Amps (Table 3)
 Inverter Output Circuit Conductor Size = _____ AWG (Table 3)

<table>
<thead>
<tr>
<th>Table 3. Minimum Inverter Output OCPD and Circuit Conductor Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverter Continuous Output Current Rating (Amps) (STEP#14)</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>Minimum OCPD Size (Amps)</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>Minimum Conductor Size (AWG, 75°C, Copper)</td>
</tr>
<tr>
<td>14</td>
</tr>
</tbody>
</table>

Integrated DC Arc-Fault Circuit Protection? □ Yes □ No (If No is selected, Comprehensive Standard Plan)
Grounded or Ungrounded System? □ Grounded □ Ungrounded
16) **Point of Connection to Utility**

Only load side connections are permitted with this plan. Otherwise, use Comprehensive Standard Plan.

Is the PV OCPD positioned at the opposite end from input feeder location or main OCPD location? □ Yes □ No

If Yes, circle the Max Combined PV System OCPD(s) at 120% value as determined from STEP 15 (or STEP S20), bus bar Rating, and Main OCPD as shown in Table 4.

If No, circle the Max Combined PV System OCPD(s) at 100% value as determined from STEP 15 (or STEP S20), bus bar Rating, and Main OCPD as shown in Table 4.

Per 705.12(D)(2): [Inverter output OCPD size [STEP #15 or S20] + Main OCPD Size]≤[bus size × (100% or 120%)]

| Table 4. Maximum Combined Supply OCPDs Based on Bus Bar Rating (Amps) per CEC 705.12(D)(2) |
|---|---|---|---|---|---|---|---|---|
| Bus bar Rating | 100 | 125 | 125 | 200 | 200 | 225 | 225 | 225 |
| Main OCPD | 100 | 100 | 125 | 150 | 175 | 200 | 175 | 200 |
| Max Combined PV System OCPD(s) at 120% of bus bar Rating | 20 | 50 | 25 | 60* | 60* | 40 | 60* | 45 |
| Max Combined PV System OCPD(s) at 100% of bus bar Rating | 0 | 25 | 0 | 50 | 25 | 0 | 50 | 25 |

*This value has been lowered to 60 A from the calculated value to reflect 10kW AC size maximum.

Reduction of the main breaker is not permitted with this plan. Otherwise, use Comprehensive Standard Plan.

17 & 18 & 19) **Labels and Grounding and Bonding**

This content is covered by the labels on Page 4 and the Single Line Diagram(s). For background information, refer to the Comprehensive Standard Plan.
Solar PV Standard Plan – Simplified
Central/String Inverter Systems for One- and Two-Family Dwellings
Markings

CEC Articles 690 and 705 and CRC Section R331 require the following labels or markings be installed at these components of the photovoltaic system:

- **WARNING**
 - **INVERTER OUTPUT CONNECTION; DO NOT RELOCATE THIS OVERCURRENT DEVICE**
 - CEC 705.12(D)(7)
 - [Not required if panelboard is rated not less than sum of ampere ratings of all overcurrent devices supplying it]

- **WARNING**
 - **ELECTRIC SHOCK HAZARD. THE DC CONDUCTORS OF THIS PHOTOVOLTAIC SYSTEM ARE UNGROUNDED AND MAY BE ENERGIZED**
 - CEC 690.35(F)
 - [Only required for ungrounded systems]

- **WARNING: PHOTOVOLTAIC POWER SOURCE**
 - CRC R331.2 and CFC 605.11.1
 - [Marked on junction/combiner boxes and conduit every 10']

- **WARNING**
 - **DUAL POWER SOURCES SECOND SOURCE IS PHOTOVOLTAIC SYSTEM RATED AC OUTPUT CURRENT- ____ AMPS AC NORMAL OPERATING VOLTAGE ____ VOLTS**
 - CEC 690.54 & CEC 705.12(D)(4)

- **WARNING**
 - **PV SYSTEM AC DISCONNECT RATED AC OUTPUT CURRENT- ____ AMPS AC NORMAL OPERATING VOLTAGE ____ VOLTS**
 - CEC 690.54

- **WARNING ELECTRIC SHOCK HAZARD IF A GROUND FAULT IS INDICATED, NORMALLY GROUNDED CONDUCTORS MAY BE UNGROUNDED AND ENERGIZED**
 - CEC 690.5(C)
 - [Normally already present on listed inverters]

- **WARNING ELECTRIC SHOCK HAZARD DO NOT TOUCH TERMINALS TERMINALS ON BOTH LINE AND LOAD SIDES MAY BE ENERGIZED IN THE OPEN POSITION**
 - CEC 690.17

- **PV SYSTEM DC DISCONNECT RATED MAX POWER-POINT CURRENT- ____ ADC RATED MAX POWER-POINT VOLTAGE- ____ VDC SHORT CIRCUIT CURRENT- ____ ADC MAXIMUM SYSTEM VOLTAGE- ____ VDC**
 - CEC 690.53

Code Abbreviations:
California Electrical Code (CEC)
California Residential Code (CRC)
California Fire Code (CFC)

Informational note: ANSI Z535.4 provides guidelines for the design of safety signs and labels for application to products. A phenolic plaque with contrasting colors between the text and background would meet the intent of the code for permanency. No type size is specified, but 20 point (3/8”) should be considered the minimum.

CEC 705.12 requires a permanent plaque or directory denoting all electric power sources on or in the premises.
Solar PV Standard Plan – Simplified
Central/String Inverter System for One – and Two – Family Dwellings
Solar PV Standard Plan – Simplified
Central/String Inverter System for One- and Two-Family Dwellings

DESCRIPTION

SOLAR PV MODULE / STRING
DC/DC CONVERTERS INSTALLED? YES / NO (IF YES, STEPS 6 & 8 REQUIRED)
SOURCE CIRCUIT JUNCTION BOX INSTALLED? YES / NO
SEPARATE DC DISCONNECT INSTALLED? YES / NO
INTERNAL INVERTER DC DISCONNECT? YES / NO
CENTRAL INVERTER LOAD CENTER INSTALLED? YES / NO
PV PRODUCTION METER INSTALLED? YES / NO
SEPARATE AC DISCONNECT INSTALLED? YES / NO

* Consult with your local AHJ and/or Utility

SINGLE-LINE DIAGRAM #1 – NO STRINGS COMBINED PRIOR TO INVERTER

CHECK A BOX FOR WHETHER SYSTEM IS GROUNDED OR UNGROUNDED:
- GROUNDED (INCLUDE GEC)
- UNGROUNDED

FOR UNGROUNDED SYSTEMS:
- DC OCPD MUST DISCONNECT BOTH CONDUCTORS OF EACH SOURCE CIRCUIT
- UNGROUNDED CONDUCTORS MUST BE IDENTIFIED PER 210.5(C). WHITE-FINISHED CONDUCTORS ARE NOT PERMITTED.

CONDUCTOR/CONDUIT SCHEDULE

<table>
<thead>
<tr>
<th>TAG</th>
<th>DESCRIPTION AND CONDUCTOR TYPE</th>
<th>CONDUCTOR SIZE</th>
<th>NUMBER OF CONDUCTORS</th>
<th>CONDUIT/CABLE TYPE</th>
<th>CONDUIT SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>USE-2 □ OR PV-WIRE □</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EGC/GEC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>EGC/GEC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>EGC/GEC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>EGC/GEC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram Note:
- If DC/DC CONVERTERS ARE USED, check the box below the corresponding configuration
- Enter "N/A" where suitable for when not using conduit or cable as permitted by code
- Parallel DC/DC Converters on One Source Circuit (Fixed Unit Voltage DC/DC Converters)
- DC/DC Converters are all run in series (Fixed Source Circuit Voltage DC/DC Converters)
CHECK A BOX FOR WHETHER SYSTEM IS GROUNDED OR UNGROUNDED: 🔴 GROUNDED (INCLUDE GEC) 🔴 UNGROUNDED

FOR UNGROUNDED SYSTEMS:
- DC OCPD MUST DISCONNECT BOTH CONDUCTORS OF EACH SOURCE CIRCUIT
- UNGROUNDED CONDUCTORS MUST BE IDENTIFIED PER 210.5(C). WHITE-FINISHED CONDUCTORS ARE NOT PERMITTED.

* Consult with your local AHJ and/or Utility
Solar PV Standard Plan — Simplified

Central/String Inverter Systems for One- and Two-Family Dwellings

Supplemental Calculation Sheets for Inverter #2

(Only include if **second** inverter is used)

<table>
<thead>
<tr>
<th>DC Information:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Manufacturer: ____________________ Model: ____________________</td>
</tr>
<tr>
<td>S2) Module V_{oc} (from module nameplate): _____ Volts S3) Module I_{sc} (from module nameplate): _____ Amps</td>
</tr>
<tr>
<td>S4) Module DC output power under standard test conditions (STC) = _____ Watts (STC)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S5) DC Module Layout</th>
</tr>
</thead>
</table>
| Identify each source circuit (string) for inverter 1 shown on the roof plan with a Tag (e.g., A, B, C ...)
| Number of modules per source circuit for inverter 1
| Identify, by tag, which source circuits on the roof are to be paralleled (if none, put N/A)
| Combiner 1: |
| Combiner 2: |

| Total number of source circuits for inverter 1: |

<table>
<thead>
<tr>
<th>S6) Are DC/DC Converters used?</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>If No, skip to STEP#S7. If Yes, enter info below.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC/DC Converter Model #: ____________</td>
<td>DC/DC Converter Max DC Input Voltage: _____ Volts</td>
<td></td>
</tr>
<tr>
<td>Max DC Output Current: ____________ Amps</td>
<td>Max DC Output Voltage: ____________ Volts</td>
<td></td>
</tr>
<tr>
<td>Max # of DC/DC Converters in a source circuit: ____________</td>
<td>DC/DC Converter Max DC Input Power: _____ Watts</td>
<td></td>
</tr>
</tbody>
</table>
S7) Max. System DC Voltage – Use A1 or A2 for systems without DC/DC converters, and B1 or B2 with DC/DC converters.

- A1. Module $V_{DC} (\text{STEP S2}) = \ldots x \# \text{ in series} \times \ldots \times 1.12 \text{ (if } -1\leq T \leq -5^\circ \text{C, STEP S1) = } \ldots \text{ V}$
- A2. Module $V_{DC} (\text{STEP S2}) = \ldots x \# \text{ in series} \times \ldots \times 1.14 \text{ (if } -6\leq T \leq -10^\circ \text{C, STEP S1) = } \ldots \text{ V}$

| Table 1. Maximum Number of PV Modules in Series Based on Module Rated VOC for 600 Vdc Rated Equipment (CEC 690.7) |
Max. Rated Module VOC (*1.12) (Volts)	29.76	31.51	33.48	35.71	38.27	41.21	44.64	48.70	53.57	59.52	66.96	76.53	89.29
Max. Rated Module VOC (*1.14) (Volts)	29.24	30.96	32.89	35.09	37.59	40.49	43.86	47.85	52.63	58.48	65.79	75.19	87.72
Max # of Modules for 600 Vdc	18	17	16	15	14	13	12	11	10	9	8	7	6

Use for DC/DC converters. The value calculated below must be less than DC/DC converter max DC input voltage (STEP #56).

- B1. Module $V_{DC} (\text{STEP#S2}) \ldots x \# \text{ of modules per converter} \times \ldots \times 1.12 \text{ (if } -1\leq T \leq -5^\circ \text{C, STEP S1) = } \ldots \text{ V}$
- B2. Module $V_{DC} (\text{STEP#S2}) \ldots x \# \text{ of modules per converter} \times \ldots \times 1.14 \text{ (if } -6\leq T \leq -10^\circ \text{C, STEP S1) = } \ldots \text{ V}$

| Table 2. Largest Module VOC for Single-Module DC/DC Converter Configurations (With 80V AFCI Cap) (CEC 690.7 and 690.11) |
Max. Rated Module VOC (*1.12) (Volts)	30.4	33.0	35.7	38.4	41.1	43.8	46.4	49.1	51.8	54.5	57.1	59.8	62.5	65.2	67.9	70.5
Max. Rated Module VOC (*1.14) (Volts)	29.8	32.5	35.1	37.7	40.4	43.0	45.6	48.2	50.9	53.5	56.1	58.8	61.4	64.0	66.7	69.3
DC/DC Converter Max DC Input (STEP #6) (Volts)	34	37	40	43	46	49	52	55	58	61	64	67	70	73	76	79

S8) Maximum System DC Voltage from DC/DC Converters to Inverter – Only required if Yes in STEP S6
- Maximum System DC Voltage = \ldots Volts

S9) Maximum Source Circuit Current
- Is Module ISC below 9.6 Amps (STEP S3)? □ Yes □ No (if No, use Comprehensive Standard Plan)

S10) Sizing Source Circuit Conductors:
- Source Circuit Conductor Size = Min. #10 AWG copper conductor, 90°C wet (USE-2, PV Wire, XHHW-2, THWN-2, RHW-2)
- For up to 8 conductors in roof-mounted conduit exposed to sunlight at least ¼” from the roof covering (CEC 310)
- Note: For over 8 conductors in the conduit or mounting height of lower than ¼” from the roof, use Comprehensive Plan.

S11) Are PV source circuits combined prior to the inverter? □ Yes □ No
- If No, use Single Line Diagram 1 with Single Line Diagram 3 and proceed to STEP S13.
- If Yes, use Single Line Diagram 2 with Single Line Diagram 4 and proceed to STEP S12.
 - Is source circuit OCPD required? □ Yes □ No
 - Source circuit OCPD size (if needed): 15 Amps

S12) Sizing PV Output Circuit Conductors – If a Combiner box will NOT be used from [STEP#S11],
- Output Circuit Conductor Size = Min. #6 AWG copper conductor

S13) Inverter DC Disconnect
- Does the inverter have an integrated DC disconnect? □ Yes □ No (if yes, proceed to STEP S14).
- If No, the external DC disconnect to be installed is rated for \ldots Amps (DC) and \ldots Volts (DC)
S14) Inverter information:
Manufacturer: ________________________ Model: ________________________________
Max. Continuous AC Output Current Rating: _______Amps
Integrated DC Arc-Fault Circuit Protection? □ Yes □ No (If No is selected, Comprehensive Standard Plan)
Grounded or Ungrounded System: □ GROUNDED □ UNGROUNDED

AC Information:

S15) Sizing Inverter Output Circuit Conductors and OCPD:
Inverter Output OCPD rating = _______Amps (Table 3)
Inverter Output Circuit Conductor Size = _______ AWG (Table 3)

<table>
<thead>
<tr>
<th>Table 3. Minimum Inverter Output OCPD and Circuit Conductor Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverter Continuous Output Current Rating (Amps) (STEP 14)</td>
</tr>
<tr>
<td>Minimum OCPD Size (Amps)</td>
</tr>
<tr>
<td>Minimum Conductor Size (AWG, 75°C, Copper)</td>
</tr>
</tbody>
</table>

Load Center Calculations
(Omit if a load center will not be installed for PV OCPDs)

S20) Load Center Output:
 Calculate the sum of the maximum AC outputs from each inverter.
 Inverter #1 Max Continuous AC Output Current Rating [STEP S14] _______ × 1.25 = _______ Amps
 Inverter #2 Max Continuous AC Output Current Rating [STEP S14] _______ × 1.25 = _______ Amps
 Total inverter currents connected to load center (sum of above) = _______ Amps

Conductor Size: _______ AWG
Overcurrent Protection Device: _______ Amps
Load center bus bar rating: _______Amps

The sum of the ampere ratings of overcurrent devices in circuits supplying power to a bus bar or conductor shall not exceed 120 percent of the rating of the bus bar or conductor.
Solar PV Standard Plan – Simplified
Central/String Inverter System for One- and Two-Family Dwellings

DESCRIPTION

SOLAR PV MODULE / STRING

DC/DC CONVERTERS INSTALLED? YES / NO (IF YES, STEPS 6 & 8 REQUIRED)

SOURCE CIRCUIT JUNCTION BOX INSTALLED? YES / NO

SEPARATE DC DISCONNECT INSTALLED? YES / NO

INTERNAL INVERTER DC DISCONNECT? YES / NO

CENTRAL INVERTER?

SEPARATE AC DISCONNECT INSTALLED TO LOAD CENTER ON LINE DIAGRAM 1? YES / NO

* Consult with your local AHJ and/or Utility

SINGLE-LINE DIAGRAM #3 – ADDITIONAL INVERTER FOR DIAGRAM #1

INVERTER # 2

CHECK A BOX FOR WHETHER SYSTEM IS GROUNDED OR UNGROUNDED:

- GROUNDED (INCLUDE EGC)
- UNGROUNDED

FOR UNGROUNDED SYSTEMS:
- DC OCPD MUST DISCONNECT BOTH CONDUCTORS OF EACH SOURCE CIRCUIT
- UNGROUNDED CONDUCTORS MUST BE IDENTIFIED PER 210.5(C). WHITE-FINISHED CONDUCTORS ARE NOT PERMITTED.

CONDUCTOR/CONDUIT SCHEDULE

<table>
<thead>
<tr>
<th>TAG</th>
<th>DESCRIPTION AND CONDUCTOR TYPE</th>
<th>CONDUCTOR SIZE</th>
<th>NUMBER OF CONDUCTORS</th>
<th>CONDUIT/CABLE TYPE</th>
<th>CONDUIT SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>USE-2 □ OR PV-WIRE □</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>EGC/EGC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>EGC/EGC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ENTER "N/A" WHERE SUITABLE FOR WHEN NOT USING CONDUIT OR CABLE AS PERMITTED BY CODE

IF DC/DC CONVERTERS ARE USED, CHECK THE BOX BELOW THE CORRESPONDING CONFIGURATION

PARALLEL DC/DC CONVERTERS ON ONE SOURCE CIRCUIT (FIXED UNIT VOLTAGE DC/DC CONVERTERS)

DC/DC CONVERTERS ARE ALL RUN IN SERIES (FIXED SOURCE CIRCUIT VOLTAGE DC/DC CONVERTERS)
Solar PV Standard Plan – Simplified
Central/String Inverter System for One- and Two-Family Dwellings

DESCRIPTION

SOLAR PV MODULE / STRING
DC/DC CONVERTERS INSTALLED? YES / NO (IF YES, STEPS 6 & 8 REQUIRED)

SOURCE CIRCUIT JUNCTION BOX INSTALLED? YES / NO

INTERNAL INVERTER DC DISCONNECT INSTALLED? YES / NO

CENTRAL INVERTER

TO LOAD CENTER ON LINE DIAGRAM 3

* Consult with your local AHJ and/or Utility

SINGLE-LINE DIAGRAM #4 – ADDITIONAL INVERTER FOR DIAGRAM #2

INVERTER # 2

CHECK A BOX FOR WHETHER SYSTEM IS GROUNDED OR UNGROUNDED:

- GROUNDED (INCLUDE GEC)
- UNGROUNDED

FOR UNGROUNDED SYSTEMS:

- DC OCPD MUST DISCONNECT BOTH CONDUCTORS OF EACH SOURCE CIRCUIT
- UNGROUNDED CONDUCTORS MUST BE IDENTIFIED PER 210.5(C). WHITE-FINISHED CONDUCTORS ARE NOT PERMITTED.

COMBINER CONDUCTOR/CONDUIT SCHEDULE

<table>
<thead>
<tr>
<th>TAG</th>
<th>DESCRIPTION AND CONDUCTOR TYPE</th>
<th>CONDUCTOR SIZE</th>
<th>NUMBER OF CONDUCTORS</th>
<th>CONDUIT/CABLE TYPE</th>
<th>CONDUIT SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>USE-2 □ OR PV-WIRE □</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EGC/GEC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>EGC/GEC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>EGC/GEC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>EGC/GEC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NON-COMBINED STRINGS CONDUCTOR/CONDUIT SCHEDULE

<table>
<thead>
<tr>
<th>TAG</th>
<th>DESCRIPTION AND CONDUCTOR TYPE</th>
<th>CONDUCTOR SIZE</th>
<th>NUMBER OF CONDUCTORS</th>
<th>CONDUIT/CABLE TYPE</th>
<th>CONDUIT SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2</td>
<td>USE-2 □ OR PV-WIRE □</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EGC/GEC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>EGC/GEC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ENTER "N/A" WHERE SUITABLE FOR WHEN NOT USING CONDUIT OR CABLE AS PERMITTED BY CODE

IF DC/DC CONVERTERS ARE USED, THEY ARE RUN IN SERIES (FIXED SOURCE CIRCUIT VOLTAGE: DC/DC CONVERTERS).
SOLAR PV STANDARD PLAN

Roof Layout Diagram for One- and Two-Family Dwellings

Items required: roof layout of all panels, modules, clear access pathways and approximate locations of electrical disconnecting means and roof access points.
Structural Criteria for Residential Rooftop Solar Energy Installations

STRUCTURAL CRITERIA FOR RESIDENTIAL FLUSH-MOUNTED SOLAR ARRAYS

1. ROOF CHECKS

A. Visual Review/Contractor’s Site Audit of Existing Conditions:

1. Is the roof a single roof without a reroof overlay? □ Y □ N
2. Does the roof structure appear structurally sound, without signs of alterations or significant structural deterioration or sagging, as illustrated in Figure 1? □ Y □ N

B. Roof Structure Data:

1. Measured roof slope (e.g. 6:12): __________:12
2. Measured rafter spacing (center-to-center): __________ inch
3. Type of roof framing (rafter or manufactured truss): □ Rafter □ Truss

2. SOLAR ARRAY CHECKS

A. Flush-mounted Solar Array:

1. Is the plane of the modules (panels) parallel to the plane of the roof? □ Y □ N
2. Is there a 2” to 10” gap between underside of module and the roof surface? □ Y □ N
3. Modules do not overhang any roof edges (ridges, hops, gable ends, eaves)? □ Y □ N

B. Do the modules plus support components weigh no more than:

4 psf for photovoltaic arrays or 5 psf for solar thermal arrays? □ Y □ N

C. Does the array cover no more than half of the total roof area (all roof planes)? □ Y □ N

D. Are solar support component manufacturer’s project-specific completed worksheets, tables with relevant cells circled, or web-based calculator results attached? □ Y □ N

E. Is a roof plan of the module and anchor layout attached? (see Figure 2) □ Y □ N

F. Downward Load Check (Anchor Layout Check):

1. Proposed anchor horizontal spacing (see Figure 2): __________ ‘ - __________’ ft-in
2. Horizontal anchor spacing per Table 1: __________ ‘ - __________’ ft-in
3. Is proposed anchor horizontal spacing less than Table 1 spacing? □ Y □ N

G. Wind Uplift Check (Anchor Fastener Check):

1. Anchor fastener data (see Figure 3):
 a. Diameter of lag screw, hanger bolt or self-drilling screw: __________ inch
 b. Embedment depth of rafter: __________ inch
 c. Number of screws per anchor (typically one): __________
 d. Are 5/16” diameter lag screws with 2.5” embedment into the rafter used, OR does the anchor fastener meet the manufacturer’s guidelines? □ Y □ N

3. SUMMARY

A. All items above are checked YES. No additional calculations are required.

B. One or more items are checked NO. Attach project-specific drawings and calculations stamped and signed by a California-licensed Civil or Structural Engineer.

Job Address: ___ Permit #: ___________________________
Contractor/Installer: ___ License # & Class: ___________________________
Signature: ___________________________ Date: __________ Phone #: ___________________________
Table 1. Maximum Horizontal Anchor Spacing

<table>
<thead>
<tr>
<th>Roof Slope</th>
<th>Rafter Spacing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16” o.c.</td>
</tr>
<tr>
<td>Photovoltaic Arrays (4 psf max)</td>
<td></td>
</tr>
<tr>
<td>Flat to 6:12</td>
<td>0° to 26°</td>
</tr>
<tr>
<td>7:12 to 12:12</td>
<td>27° to 45°</td>
</tr>
<tr>
<td>13:12 to 24:12</td>
<td>46° to 63°</td>
</tr>
<tr>
<td>Solar Thermal Arrays (5 psf max)</td>
<td></td>
</tr>
<tr>
<td>Flat to 6:12</td>
<td>0° to 26°</td>
</tr>
<tr>
<td>7:12 to 12:12</td>
<td>27° to 45°</td>
</tr>
<tr>
<td>13:12 to 24:12</td>
<td>46° to 63°</td>
</tr>
</tbody>
</table>

Solar support component manufacturer’s guidelines may be relied upon to ensure the array above the roof is properly designed, but manufacturer’s guidelines typically do NOT check to ensure that the roof itself can support the concentrated loads from the solar array. Table 1 assumes that the roof complied with the building code in effect at the time of construction, and places limits on anchor horizontal spacing to ensure that a roof structure is not overloaded under either downward loads or wind uplift loads. Note 4 below lists the basic assumptions upon which this table is based.

Table 1 Notes:

1. Anchors are also known as “stand-offs”, “feet”, “mounts” or “points of attachment”. Horizontal anchor spacing is also known as “cross-slope” or “east-west” anchor spacing (see Figure 2).
2. If anchors are staggered from row-to-row going up the roof, the anchor spacing may be twice that shown above, but no greater than 6'-0”.
3. For manufactured plated wood trusses at slopes of flat to 6:12, the horizontal anchor spacing shall not exceed 4'-0” and anchors in adjacent rows shall be staggered.
4. This table is based on the following assumptions:
 - The roof structure conformed to building code requirements at the time it was built.
 - The attached list of criteria is met.
 - Mean roof height is not greater than 40 feet.
 - Roof sheathing is at least 7/16” thick oriented strand board or plywood. 1x skip sheathing is acceptable.
 - If the dwelling is in Wind Exposure B (typical urban, suburban or wooded areas farther than 500 yards from large open fields), no more than one of the following conditions apply:
 - The dwelling is located in a special wind region with design wind speed between 115 and 130 mph per ASCE 7-10, or
 - The dwelling is located on the top half of a tall hill, provided average slope steeper is less than 15%
- If the dwelling is In Wind Exposure C (within 500 yards of large open fields or grasslands), all of the following conditions apply:
 - Design wind speed is 110 mph or less (not in a Special Wind Region), and
 - The dwelling is not located on the top half of a tall hill.
- The solar array displaces roof live loads (temporary construction loads) that the roof was originally designed to carry.
- The Structural Technical Appendix provides additional information about analysis assumptions.

<table>
<thead>
<tr>
<th>Assumed Vintage</th>
<th>Nominal Size</th>
<th>Actual Size</th>
<th>Non-Tile Roof</th>
<th>Tile Roof</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>16" o.c.</td>
<td>24" o.c.</td>
</tr>
<tr>
<td>Post-1960</td>
<td>2x4</td>
<td>1¾"x3½"</td>
<td>9'-10"</td>
<td>8'-0"</td>
</tr>
<tr>
<td></td>
<td>2x6</td>
<td>1½"x5½"</td>
<td>14'-4"</td>
<td>11'-9"</td>
</tr>
<tr>
<td></td>
<td>2x8</td>
<td>1½"x7½"</td>
<td>18'-2"</td>
<td>14'-10"</td>
</tr>
<tr>
<td>Pre-1960</td>
<td>2x4</td>
<td>1¾"x3¾"</td>
<td>11'-3"</td>
<td>9'-9"</td>
</tr>
<tr>
<td></td>
<td>2x6</td>
<td>1¾"x5¾"</td>
<td>17'-0"</td>
<td>14'-0"</td>
</tr>
<tr>
<td></td>
<td>2x8</td>
<td>1¾"x7¾"</td>
<td>22'-3"</td>
<td>18'-0"</td>
</tr>
</tbody>
</table>

Beyond a visual review by the Contractor checking for unusual sagging or deterioration, some CBOs may want additional assurance that the roof structure complies with structural building code requirements. Table 2 is an optional table some CBOs may elect to use to provide additional assurance by requiring a check of existing roof rafter spans, and supports optional criteria 1.B.5 and 1.B.6. For post-1960 construction, these span tables match the rafter span tables found in the 2013 California Building and Residential codes. For pre-1960 construction, the rafter span tables are based on structural calculations with lumber sizes and wood species & grade appropriate for older construction. Note 5 below lists the basic assumptions upon which this table is based.

Table 2 Notes:
1. See Figure 4 for definition of roof rafter maximum horizontal span.
2. “Non-tile Roof” = asphalt shingle, wood shingle & wood shake, with an assumed roof assembly weight of 10 psf.
3. “Tile Roof” = clay tile or cement tile, with an assumed roof assembly weight of 20 psf
4. Unaltered manufactured plated-wood trusses may be assumed to be code compliant and meet intent of Table 2.
5. This table is based on the following assumptions:
 - Span/deflection ratio is equal to or greater than 180.
 - For post-1960 construction, wood species and grade is Douglas Fir-Larch No. 2.
 - For pre-1960 construction, wood species and grade is Douglas Fir-Larch No. 1.
 - Other wood species and/or grade are also acceptable if allowable bending stress is equal or greater to that listed above.
Figure 1. Roof Visual Structural Review (Contractor’s Site Audit) of Existing Conditions.

The site auditor should verify the following:

1. No visually apparent disallowed rafter holes, notches and truss modifications as shown above.
2. No visually apparent structural decay or un-repaired fire damage.
3. Roof sag, measured in inches, is not more than the rafter or ridge beam length in feet divided by 20.

Rafters that fail the above criteria should not be used to support solar arrays unless they are first strengthened.
Figure 2. Sample Solar Panel Array and Anchor Layout Diagram (Roof Plan).
Figure 3. Typical Anchor with Lag Screw Attachment.

Figure 4. Definition of Rafter Horizontal Span.