Solar Eligibility Checklist for Expedited Photovoltaic Permitting for One- and Two-Family Dwellings

2016 CEC

CENTRAL STRING INVERTER

GENERAL REQUIREMENTS

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Y</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. System size is 10 kW DC rating or less</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. System is located in an area with a ground snow load of ___ (≤ 20 pounds)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. System is being installed on a legally permitted structure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. The solar array if roof-mounted on one or two family dwelling or accessory structure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. Solar system is utility interactive and without battery storage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. Permit application is completed and attached</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ELECTRICAL REQUIREMENTS

No more than four photovoltaic module strings are connected to each Maximum Power Point Tracking (MPPT) input where source circuit fusing is included in the inverter

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Y</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) No more than two strings per MPPT input where source circuit fusing is not included</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2) Fuses (if needed) are rated to the series fuse rating of the PV module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3) No more than one noninverter-integrated DC combiner is utilized per inverter</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Y</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. For central inverter systems: No more than two inverters are utilized</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. The PV system is interconnected to a single-phase AC service panel of nominal 120/240 Vac with a bus bar rating of 225 A or less</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. The PV system is connected to the load side of the utility distribution equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. A Solar PV Standard Plan and supporting documentation is completed and attached</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STRUCTURAL REQUIREMENTS

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Y</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. A completed Structural Criteria and supporting documentation is attached (if required) (see pages 7 - 11 for information on structural criteria, fill out and sign page 11)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIRE SAFETY REQUIREMENTS

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Y</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Clear access pathways provided (see last page for worksheet / or attach field copy on back)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. Fire classification solar system is provided (UL 1703 for racking & module proposed)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. All required markings and labels are provided (guide lines given on sheet 6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. A diagram of the roof layout of all panels, modules, clear access pathways and approximate locations of electrical disconnecting means and roof access points is completed and attached (see last page for worksheet / or attach field copy on back)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. These criteria are intended for expedited solar permitting process.
2. If any items are checked NO, revise design to fit within Eligibility Checklist, otherwise permit application will go through standard review process.

FEES UNDER THIS SYSTEM ARE BASED UPON ONE PLAN CHECK REVIEW AND ONE FIELD INSPECTION. ANY ADDITIONAL PLAN REVIEW OR INSPECTIONS WILL BE CHARGED AT BUILDING SERVICES CURRENT TIME AND MATERIAL RATE.
Solar PV Standard Plan – Simplified Central/String Inverter Systems for One- and Two-Family Dwellings

SCOPE: Use this plan ONLY for utility-interactive central/string inverter systems not exceeding a DC system output rating of 10kW on the roof of a one- or two-family dwelling or accessory structure. The photovoltaic system must interconnect to the load side of a single-phase AC service panel of nominal 120/240Vac with a bus bar rating of 225A or less. This plan is not intended for bipolar systems, hybrid systems or systems that utilize storage batteries, charge controllers, trackers, more than two inverters or more than one DC combiner (non-inverter-integrated) per inverter. Systems must be in compliance with current California Building Standards Codes and any local amendments. Other Articles of the California Electrical Code (CEC) shall apply as specified in 690.3.

MANUFACTURER’S SPECIFICATION SHEETS MUST BE PROVIDED for proposed inverter, modules, combiner/junction boxes and racking systems. Installation instructions for bonding and grounding equipment shall be provided. Listed and labeled equipment shall be installed and used in accordance with any instructions included in the listing or labeling (CEC 110.3). Equipment intended for use with PV system shall be identified and listed for the application (CEC 690.4[D]).

Job Address: _____________________________ Permit #: __________________________

Contractor/ Engineer Name: _____________________________ License # and Class: ____________

Signature: _____________________________ Date: _______ Phone Number: ____________

Total # of Inverters installed: _______ (If more than one inverter, complete and attach the “Supplemental Calculation Sheets” and the “Load Center Calculations” if a new load center is to be used.)

Inverter 1 AC Output Power Rating: _________________ Watts

Inverter 2 AC Output Power Rating (if applicable): _________________ Watts

Combined Inverter Output Power Rating: _________________ ≤ 10,000 Watts

NOTE: This application is based on lowest ambient temperature of -5°C and average high of 47°C. If expected ambient temperatures are outside of this range use a Standard Plan.

1) CIRCLE TYPE OF SYSTEM BELOW:
A) CENTRAL INVERTER(S) ONLY B) CENTRAL INVERTER(S) WITH DC/DC CONVERTERS

NOTE: IF USING CENTRAL INVERTER ONLY: DOES THIS SYSTEM MEET 690.12; RAPID SHUTDOWN REQUIREMENT. WILL SHUT DOWN SYSTEM IN 30 SECONDS OR LESS TO 30V OR LESS WITHIN 10’ OF ARRAY ON ROOF AND WITHIN 5’ OF ANY ROOF PENETRATIONS.

YES ______ NO _______ (Must comply to be eligible for permit)

DC INFORMATION

Module Manufacturer: _____________________________ Model: _____________________________

2) Module V_{OC} (from module nameplate): ______ Volts

3) Module I_{SC} (from module nameplate): _______ Amps

4) Module DC output power under standard test conditions (STC) = _______ Watts (STC)
5) DC MODULE/STRING LAYOUT FOR INVERTER 1 / (2)

<table>
<thead>
<tr>
<th>Identify each source circuit (string) for inverter shown on the roof plan with a Tag (e.g., A, B, C...)</th>
<th>Number of modules per source circuit for inverter</th>
<th>Identify, by tag, which source circuits on the roof are to be paralleled (if none, put N/A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combiner 1:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total number of source circuits for inverter 1 / (2) MAX OF 4

6) Are DC/DC Converters used? [] Yes [] No IF NO, SKIP TO 7A. IF YES, enter info below; then go to 7B

DC/DC Converter Model #: ________________
Max DC Output Current: ________________ Amps
Max # of DC/DC Converters in an Input Circuit: ________________

DC/DC Converter Max DC Input Voltage: __________Volts (ii)
Max DC Output Voltage: ________________ Volts
DC/DC Converter Max DC Input Power: ________________ Watts

7A) Max. System DC Voltage – Use A1 for systems without DC/DC converters, and B1 with DC/DC converters.

A1. Module V_{DC} (STEP 2) = _______ x # MODULES in series (STEP 5) _______$x 1.12 = V_{TOTAL}$

NOTE: V_{TOTAL} MUST BE LESS THAN 600V.

| Table 1. Maximum Number of PV Modules in Series Based on Module Rated VOC for 600 Vdc Rated Equipment (CEC 690.7) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Max. Rated Module VOC round up | 29.76 | 31.51 | 33.48 | 35.71 | 38.27 | 41.21 | 44.64 | 48.70 | 53.57 | 59.52 | 66.96 | 76.53 | 89.29 |
| Max # of Modules for 600 Vdc | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 |

7B) Use for DC/DC converters. The value calculated below must be less than DC/DC converter max DC input voltage (STEP #6).

B1. Module V_{DC} (STEP 2) _______ x # of modules per converter (STEP 6) _______$x 1.12 = V < $STEP 6 part (ii)

| Table 2. Largest Module VOC for Single-Module DC/DC Converter Configurations (With 80V AFCI Cap) (CEC 690.7 and 690.11) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Max. Rated Module VOC (*1.12) (Volts) | 30.4 | 33.0 | 35.7 | 38.4 | 41.1 | 43.8 | 46.4 | 49.1 | 51.8 | 54.5 | 57.1 | 59.8 | 62.5 | 65.2 | 67.9 | 70.5 |
| DC/DC Converter Max DC Input (STEP #6) (Volts) | 34 | 37 | 40 | 43 | 46 | 49 | 52 | 55 | 58 | 61 | 64 | 67 | 70 | 73 | 76 | 79 |

8) Maximum System DC Voltage from DC/DC Converters to Inverter – Only required if Yes in STEP 6
 Maximum System DC Voltage = ________________ Volts
If using DC/DC Converters go to step 10, otherwise proceed to step 9.

9) Maximum Source Circuit Current
 Is Module I_{SC} below 9.6 Amps (STEP 3)? □ Yes □ No (if No, use Comprehensive Standard Plan)

10) Sizing Source Circuit Conductors
 Source Circuit Conductor Size = Min. #10 AWG copper conductor, 90°C wet (USE-2, PV Wire, XHHW-2, THWN-2, RHW-2)
 For up to 8 conductors in roof-mounted conduit exposed to sunlight at least ¾" from the roof covering (CEC 310)
 Note: For over 8 conductors in the conduit or mounting height of lower than ¾" from the roof, use Comprehensive Plan.

11) Are PV source circuits combined prior to the inverter? □ Yes □ No
 If No, use Single Line Diagram 1 (page 12) and proceed to step 13
 If Yes, use Single Line Diagram 2 (page 13) and proceed to below
 Is source circuit OCPD required? (REQUIRED WHEN 3 OR MORE CIRCUITS ARE IN PARALLEL) □ Yes □ No
 Source circuit OCPD size (if needed): 15 Amps □ Yes □ No go to STEP 12.

12) SIZE OF PV OUTPUT CIRCUIT CONDUCTORS ________
 IF CIRCUITS ARE COMBINED THEN *
 * Output Circuit Conductor Size = Min. #6 AWG copper conductor

13) Inverter DC Disconnect
 Does the inverter have an integrated DC disconnect? □ Yes □ No If yes, proceed to STEP 14.
 If no, the external DC disconnect to be installed is rated for _______ Amps (DC) and ______ Volts (DC)

14) Inverter information
 Manufacturer: __________________________ Model: __________________________
 Max. Continuous AC Output Current Rating: _______ Amps
 Integrated DC Arc-Fault Circuit Protection? □ Yes □ No (If No is selected, Comprehensive Standard Plan)
 Grounded or Ungrounded System: □ Grounded □ Ungrounded

AC INFORMATION

15) Sizing Inverter Output Circuit Conductors and OCPD (use AC output from step 14 with row one)
 Inverter Output OCPD rating = _______ Amps (Table 3) *ROUND UP TO THE NEAREST AMP GIVEN*
 Inverter Output Circuit Conductor Size = _______ AWG (Table 3)

<table>
<thead>
<tr>
<th>Table 3. Minimum Inverter Output OCPD and Circuit Conductor Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverter Continuous Output Current Rating (Amps) [STEP#14]</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>Minimum OCPD Size (Amps)</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>Minimum Conductor Size (AWG, 75°C, Copper)</td>
</tr>
<tr>
<td>14</td>
</tr>
</tbody>
</table>

Integrated DC Arc-Fault Circuit Protection? □ Yes □ No (If No is selected, Comprehensive Standard Plan)
Grounded or Ungrounded System? □ Grounded □ Ungrounded
16) Point of Connection to Utility
Only load side connections are permitted with this plan. Otherwise, use Comprehensive Standard Plan.

Is the PV OCPD positioned at the opposite end from input feeder location or main OCPD location? □ Yes □ No
If Yes, circle the Max Combined PV System OCPD(s) at 120% value as determined from STEP 15 (or STEP #20), bus bar Rating, and Main OCPD as shown in Table 4.
If No, circle the Max Combined PV System OCPD(s) at 100% value as determined from STEP 15 (or STEP #20), bus bar Rating, and Main OCPD as shown in Table 4.
Per 705.12(D)(2): [Inverter output OCPD size [STEP #15 or #20] + Main OCPD Size]≤[bus size × (100% or 120%)]

<table>
<thead>
<tr>
<th>Table 4. Maximum Combined Supply OCPDs Based on Bus Bar Rating (Amps) per CEC 705.12(D)(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIRCLE COLUMN</td>
</tr>
<tr>
<td>Bus bar Rating</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>Main OCPD</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>Max Combined PV System OCPD(s) at 120% of bus bar Rating</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>Max Combined PV System OCPD(s) at 100% of bus bar Rating</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

*This value has been lowered to 60 A from the calculated value to reflect 10kW AC size maximum.

17 & 18 & 19) Labels and Grounding and Bonding
This content is covered by the labels on Page 6 and the Single Line Diagram(s). For background information, refer to the Comprehensive Standard Plan.

IF USING TWO INVERTERS CONTINUE TO STEP 20, ELSE GO TO NEXT PAGE

20) If using a second inverter print out pages 2 through 5 using specifications for second inverter (circle 2 @ top of step 5). Note that item 16 will be the sum of the two inverters, which may not exceed 60 amps, else use comprehensive standard plan.
Solar PV Standard Plan – Simplified
Central/String Inverter Systems for One- and Two-Family Dwellings

Markings

CEC Articles 690 and 705 and CRC Section R331 require the following labels or markings be installed at these components of the photovoltaic system:

- **WARNING INVERTER OUTPUT CONNECTION; DO NOT RELOCATE THIS OVERCURRENT DEVICE**
 - CEC 705.12(D)(7)
 - [Not required if panelboard is rated not less than sum of ampere ratings of all overcurrent devices supplying it]

- **WARNING ELECTRIC SHOCK HAZARD. THE DC CONDUCTORS OF THIS PHOTOVOLTAIC SYSTEM ARE UNGROUNDED AND MAY BE ENERGIZED**
 - CEC 690.35(F)
 - [Only required for ungrounded systems]

- **WARNING: PHOTOVOLTAIC POWER SOURCE**
 - CRC R331.2 and CFC 605.11.1
 - [Marked on junction/combiner boxes and conduit every 10']

- **WARNING DUAL POWER SOURCES**
 - SECOND SOURCE IS PHOTOVOLTAIC SYSTEM
 - RATED AC OUTPUT CURRENT - ____ AMPS
 - NORMAL OPERATING VOLTAGE __ VOLTS
 - CEC 690.54 & CEC 705.12(D)(4)

- **PV SYSTEM AC DISCONNECT**
 - RATED AC OUTPUT CURRENT - ____ AMPS
 - AC NORMAL OPERATING VOLTAGE __ VOLTS
 - CEC 690.54

- **WARNING ELECTRIC SHOCK HAZARD**
 - IF A GROUND FAULT IS INDICATED, NORMALLY GROUNDED CONDUCTORS MAY BE UNGROUNDED AND ENERGIZED
 - CEC 690.5(C)
 - [Normally already present on listed inverters]

- **WARNING ELECTRIC SHOCK HAZARD DO NOT TOUCH TERMINALS**
 - TERMINALS ON BOTH LINE AND LOAD SIDES MAY BE ENERGIZED IN THE OPEN POSITION
 - CEC 690.17

- **PV SYSTEM DC DISCONNECT**
 - RATED MAX POWER-POINT CURRENT - ____ ADC
 - RATED MAX POWER-POINT VOLTAGE - ____ VDC
 - SHORT CIRCUIT CURRENT - ____ ADC
 - MAXIMUM SYSTEM VOLTAGE - ____ VDC
 - CEC 690.53

Code Abbreviations:
- California Electrical Code (CEC)
- California Residential Code (CRC)
- California Fire Code (CFC)

Informational note: ANSI Z535.4 provides guidelines for the design of safety signs and labels for application to products. A phenolic plaque with contrasting colors between the text and background would meet the intent of the code for permanency. No type size is specified, but 20 point (3/8”) should be considered the minimum.

CEC 705.12 requires a permanent plaque or directory denoting all electric power sources on or in the premises.
Table 1. Maximum Horizontal Anchor Spacing

<table>
<thead>
<tr>
<th>Roof Slope</th>
<th>Rafter Spacing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16” o.c.</td>
</tr>
<tr>
<td>Photovoltaic Arrays (4 psf max)</td>
<td></td>
</tr>
<tr>
<td>Flat to 6:12</td>
<td>0° to 26°</td>
</tr>
<tr>
<td>7:12 to 12:12</td>
<td>27° to 45°</td>
</tr>
<tr>
<td>13:12 to 24:12</td>
<td>46° to 63°</td>
</tr>
<tr>
<td>Solar Thermal Arrays (5 psf max)</td>
<td></td>
</tr>
<tr>
<td>Flat to 6:12</td>
<td>0° to 26°</td>
</tr>
<tr>
<td>7:12 to 12:12</td>
<td>27° to 45°</td>
</tr>
<tr>
<td>13:12 to 24:12</td>
<td>46° to 63°</td>
</tr>
</tbody>
</table>

Solar support component manufacturer’s guidelines may be relied upon to ensure the array above the roof is properly designed, but manufacturer’s guidelines typically do NOT check to ensure that the roof itself can support the concentrated loads from the solar array. Table 1 assumes that the roof complied with the building code in effect at the time of construction, and places limits on anchor horizontal spacing to ensure that a roof structure is not overloaded under either downward loads or wind uplift loads. Note 4 below lists the basic assumptions upon which this table is based.

Table 1 Notes:

1. Anchors are also known as “stand-offs”, “feet”, “mounts” or “points of attachment”. Horizontal anchor spacing is also known as “cross-slope” or “east-west” anchor spacing (see Figure 2).

2. If anchors are staggered from row-to-row going up the roof, the anchor spacing may be twice that shown above, but no greater than 6’-0”.

3. This table is based on the following assumptions:
 - The roof structure conformed to building code requirements at the time it was built.
 - The attached list of criteria is met.
 - Mean roof height is not greater than 40 feet.
 - Roof sheathing is at least 7/16” thick oriented strand board or plywood. 1x skip sheathing is acceptable.
 - If the dwelling is in Wind Exposure B (typical urban, suburban or wooded areas farther than 500 yards from large open fields), no more than one of the following conditions apply:
 - The dwelling is located in a special wind region with design wind speed between 115 and 130 mph per ASCE 7-10, or
 - The dwelling is located on the top half of a tall hill, provided average slope steeper is less than 15%
• If the dwelling is In Wind Exposure C (within 500 yards of large open fields or grasslands), all of the following conditions apply:
 - Design wind speed is 110 mph or less (not in a Special Wind Region), and
 - The dwelling is not located on the top half of a tall hill.
• The solar array displaces roof live loads (temporary construction loads) that the roof was originally designed to carry.
• The Structural Technical Appendix provides additional information about analysis assumptions.

<table>
<thead>
<tr>
<th>Assumed Vintage</th>
<th>Nominal Size</th>
<th>Actual Size</th>
<th>Non-Tile Roof</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16" o.c.</td>
<td>24" o.c.</td>
<td>32" o.c.</td>
<td>16" o.c.</td>
<td>24" o.c.</td>
</tr>
<tr>
<td>Post-1960</td>
<td>1¾"x3¾"</td>
<td>9'-10"</td>
<td>8'-0"</td>
<td>6'-6"</td>
<td>8'-6"</td>
</tr>
<tr>
<td></td>
<td>1¾"x5¾"</td>
<td>14'-4"</td>
<td>11'-9"</td>
<td>9'-6"</td>
<td>12'-5"</td>
</tr>
<tr>
<td></td>
<td>1¾"x7¾"</td>
<td>18'-2"</td>
<td>14'-10"</td>
<td>12'-0"</td>
<td>15'-9"</td>
</tr>
<tr>
<td>Pre-1960</td>
<td>1¼"x3¼"</td>
<td>11'-3"</td>
<td>9'-9"</td>
<td>7'-9"</td>
<td>10'-3"</td>
</tr>
<tr>
<td></td>
<td>1¼"x5¼"</td>
<td>17'-0"</td>
<td>14'-0"</td>
<td>11'-3"</td>
<td>14'-9"</td>
</tr>
<tr>
<td></td>
<td>1¼"x7¼"</td>
<td>22'-3"</td>
<td>18'-0"</td>
<td>14'-6"</td>
<td>19'-0"</td>
</tr>
</tbody>
</table>

1. | beyond a visual review by the contractor checking for unusual sagging or deterioration, some CB0s may want additional assurance that the roof structure complies with structural building code requirements. Table 2 is an optional table some CB0s may elect to use to provide additional assurance by requiring a check of existing roof rafter spans, and supports optional criteria 1.B.5 and 1.B.6. For post-1960 construction, these span tables match the rafter span tables found in the 2013 California Building and Residential codes. For pre-1960 construction, the rafter span tables are based on structural calculations with lumber sizes and wood species & grade appropriate for older construction. Note 5 below lists the basic assumptions upon which this table is based.

Table 2 Notes:
1. See Figure 4 for definition of roof rafter maximum horizontal span.
2. “Non-tile Roof” = asphalt shingle, wood shingle & wood shake, with an assumed roof assembly weight of 10 psf.
3. “Tile Roof” = clay tile or cement tile, with an assumed roof assembly weight of 20 psf.
4. Unaltered manufactured plated-wood trusses may be assumed to be code compliant and meet intent of Table 2.
5. This table is based on the following assumptions:
 • Span/deflection ratio is equal to or greater than 180.
 • For post-1960 construction, wood species and grade is Douglas Fir-Larch No. 2.
 • For pre-1960 construction, wood species and grade is Douglas Fir-Larch No. 1.
 • Other wood species and/or grade are also acceptable if allowable bending stress is equal or greater to that listed above.
Figure 1. Roof Visual Structural Review (Contractor’s Site Audit) of Existing Conditions.

The site auditor should verify the following:

1. No visually apparent disallowed rafter holes, notches and truss modifications as shown above.
2. No visually apparent structural decay or un-repaired fire damage.
3. Roof sag, measured in inches, is not more than the rafter or ridge beam length in feet divided by 20.

Rafters that fail the above criteria should not be used to support solar arrays unless they are first strengthened.

Figure 4. Definition of Rafter Horizontal Span.
Figure 2. Sample Solar Panel Array and Anchor Layout Diagram (Roof Plan).

Figure 3. Typical Anchor with Lag Screw Attachment.
Structural Criteria for Residential Rooftop Solar Energy Installations

STRUCTURAL CRITERIA FOR RESIDENTIAL FLUSH-MOUNTED SOLAR ARRAYS

1. ROOF CHECKS
 A. Visual Review/Contractor’s Site Audit of Existing Conditions:
 1) Is the roof a single roof without a reroof overlay? □ Y □ N
 2) Does the roof structure appear structurally sound, without signs of alterations or significant structural deterioration or sagging, as illustrated in Figure 1? □ Y □ N
 B. Roof Structure Data:
 1) Measured roof slope (e.g. 6:12): __________ :12
 2) Measured rafter spacing (center-to-center): __________ inch
 3) Type of roof framing (rafter or manufactured truss): □ Rafter □ Truss

2. SOLAR ARRAY CHECKS
 A. Flush-mounted Solar Array:
 1) Is the plane of the modules (panels) parallel to the plane of the roof? □ Y □ N
 2) Is there a 2” to 10” gap between underside of module and the roof surface? □ Y □ N
 3) Modules do not overhang any roof edges (ridges, hops, gable ends, eaves)? □ Y □ N
 B. Do the modules plus support components weigh no more than:
 4 psf for photovoltaic arrays or 5 psf for solar thermal arrays? □ Y □ N
 C. Does the array cover no more than half of the total roof area (all roof planes)? □ Y □ N
 D. Are solar support component manufacturer’s project-specific completed worksheets, tables with relevant cells circled, or web-based calculator results attached? □ Y □ N
 E. Is a roof plan of the module and anchor layout attached? (see Figure 2) □ Y □ N
 F. Downward Load Check (Anchor Layout Check):
 1) Proposed anchor horizontal spacing (see Figure 2): ______ ’ - ______ “ft-in
 2) Horizontal anchor spacing per Table 1: ______ ’ - ______ “ft-in
 3) Is proposed anchor horizontal spacing less than Table 1 spacing? □ Y □ N
 G. Wind Uplift Check (Anchor Fastener Check):
 1) Anchor fastener data (see Figure 3):
 a. Diameter of lag screw, hanger bolt or self-drilling screw: __________ inch
 b. Embedment depth of rafter: __________ inch
 c. Number of screws per anchor (typically one): ______
 d. Are 5/16” diameter lag screws with 2.5” embedment into the rafter used, OR does the anchor fastener meet the manufacturer’s guidelines? □ Y □ N

3. SUMMARY
 A. All items above are checked YES. No additional calculations are required.
 B. One or more items are checked NO. Attach project-specific drawings and calculations stamped and signed by a California-licensed Civil or Structural Engineer.

Job Address: ____________________________ Permit #:
Contractor/Installer: ____________________________ License # & Class:
Signature: ____________________________ Date: __________ Phone #: ____________________________
Central/Split Inverter System for One and Two Family Dwellings

ROOF PLAN